Personal exposure to fine particles (PM2.5) and respiratory inflammation of common residents in Hong Kong


    loading  Checking for direct PDF access through Ovid

Abstract

Background:Given the lack of research on the personal exposure to fine particles (PM2.5) in Hong Kong, we examined the association between short-term personal exposure to PM2.5 and their constituents and inflammation in exhaled breath in a sample of healthy adult residents.Method:Forty-six participants underwent personal PM2.5 monitoring for averagely 6 days to obtain 276 samples. Fractional exhaled nitric oxide (FeNO), a biomarker of inflammation in exhaled breath, was measured at the end of each 24-h personal monitoring. PM2.5 chemical constituents, including organic carbon, elemental carbon, 16 polycyclic aromatic hydrocarbons (PAHs), and 6 phthalate esters, were speciated from the personal samples collected. A mixed-effects model was used to estimate the association of PM2.5 and their constituents with FeNO. The comparison was also made with parallel analyses using ambient concentrations.Results:Personal exposures to PM2.5 (28.1 ± 23.3 μg/m3) were higher than the ambient levels (13.3 ± 6.4 μg/m3) monitored by stations. The composition profile and personal-to-ambient concentration ratio varied among subjects with different occupations. An interquartile range (IQR) change in personal exposure to PM2.5 was positively associated with 12.8% increase in FeNO (95% confidence interval, CI: 5.5–20.7%), while nil association was found for ambient PM2.5. Among the constituents measured, only the carcinogenic PAHs were significantly associated with 12% increase in FeNO responses (95% CI, 0.0–25.6%).Conclusion:In conclusion, our study provides the first understanding about personal exposure to PM2.5 and possible sources in Hong Kong. The results also showed that personal exposure to PM2.5 and c-PAHs were linked to increased FeNO levels among healthy adults.HighlightsPersonal PM2.5 monitoring from 46 healthy adults with up to 6 repeated measurements were conducted.Personal PM2.5 exposures were higher than ambient levels monitored by stations.Mixed-effects model was applied to assess the relationship between air pollutants exposure and biomarker.Significant associations were observed for the increased FeNO with personal exposure to PM2.5 and c-PAHs.

    loading  Loading Related Articles