Metal(loid) bioaccessibility and inhalation risk assessment: A comparison between an urban and an industrial area

    loading  Checking for direct PDF access through Ovid

Abstract

The content of metal(loid)s in particulate matter (PM) is of special concern due to their contribution to overall (PM) toxicity. In this study, the bioaccessibility and human health risk of potentially toxic metal(loid)s associated with PM10 were investigated in two areas of the Cantabrian region (northern Spain) with different levels of exposure: an industrial area mainly influenced by a ferromanganese alloy plant; and an urban area consisting mainly of residential and commercial activities, but also affected, albeit to a lesser extent by the ferroalloy plant. Total content and bioaccessible fractions in simulated lung fluids (SLFs) of Fe, Mn, Zn, Ni, Cu, Sb, Mo, Cd and Pb were determined by ICP-MS. Gamble's solution and artificial lysosomal fluid (ALF) were used to mimic different conditions inside the human respiratory system. A health risk assessment was performed based on the United States Environmental Protection Agency's (USEPA) methodology. Most metal(loid)s showed moderate and high bioaccessibility in Gamble's solution and ALF, respectively. Despite the high variability between the samples, metal(loid) bioaccessibility was found to be higher on average at the industrial site, suggesting a greater hazard to human health in the proximity of the main metal(loid) sources. Based on the results of the risk assessment, the non-carcinogenic risk associated with Mn exposure was above the safe limit (HQ> 1) under all the studied scenarios at the industrial site and under some specific scenarios at the urban location. The estimated carcinogenic inhalation risk for Cd exposure at the industrial site was found to be within the range between 1.0 × 10−6 to 1.0 × 10−4 (uncertainty range) under some scenarios. The results obtained in this study indicate that Mn and Cd inhalation exposure occurring in the vicinities of the studied areas may pose a human health risk.

Related Topics

    loading  Loading Related Articles