Facial Emotion Recognition after Curative Nondominant Temporal Lobectomy in Patients with Mesial Temporal Sclerosis

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

The right (nondominant) amygdala is crucial for processing facial emotion recognition (FER). Patients with temporal lobe epilepsy (TLE) associated with mesial temporal sclerosis (MTS) often incur right amygdalar damage, resulting in impaired FER if TLE onset occurred before age 6 years. Consequently, early right mesiotemporal insult has been hypothesized to impair plasticity, resulting in FER deficits, whereas damage after age 5 years results in no deficit. The authors performed this study to test this hypothesis in a uniformly seizure-free postsurgical population.

Methods

Controls (n = 10), early-onset patients (n = 7), and late-onset patients (n = 5) were recruited. All patients had nondominant anteromedial temporal lobectomy (AMTL), Wada-confirmed left-hemisphere language dominance and memory support, MTS on both preoperative MRI and biopsy, and were Engel class I 5 years postoperatively. By using a standardized (Ekman and Friesen) human face series, subjects were asked to match the affect of one of two faces to that of a simultaneously presented target face. Target faces expressed fear, anger, or happiness.

Results

Statistical analysis revealed that the early-onset group had significantly impaired FER (measured by percentage of faces correct) for fear (p = 0.036), whereas the FER of the late-onset group for fear was comparable to that of controls. FER for anger and happiness was comparable across all three groups.

Conclusions

Despite seizure control/freedom after AMTL, early TLE onset continues to impair FER for frightened expressions (but not for angry or happy expression), whereas late TLE onset does not impair FER, with no indication that AMTL resulted in FER impairment. These results indicate that proper development of the right amygdala is necessary for optimal fear recognition, with other neural processes unable to compensate for early amygdalar damage.

Related Topics

    loading  Loading Related Articles