Surface-based laminar analysis of diffusion abnormalities in cortical and white matter layers in neocortical epilepsy

    loading  Checking for direct PDF access through Ovid



Microstructural alterations seen in the epileptic cortex have been implicated as a cause and also result of multiple seizure activity. In the present study, we evaluated water diffusion changes at different cortical thickness fractions and in the underlying white matter of the epileptic cortex and compared them with electrographically normal cortex and also with corresponding cortical regions of healthy controls.


We selected 18 children with normal magnetic resonance imaging (MRI) who underwent two-stage epilepsy surgery to control seizures of neocortical origin, and compared their MR images with those of 18 age-matched healthy controls. First, delineation of the gray-white and gray-pial intersection surfaces was performed on high-resolution volumetric T1 MR images. Using the delineated surfaces as reference, diffusion values were measured at different cortical thickness fractions and in the underlying white matter at various depths, using diffusion tensor imaging (DTI). Cortical regions representing seizure onset and electrographically normal cortex were differentiated by electrocorticography in the epilepsy patients.

Key Findings

We observed different patterns of diffusion abnormalities in both the seizure onset and electrographically normal cortical regions when compared to healthy controls. In the seizure-onset regions, a markedincreasein diffusivity was noted in the cortical gray matter, and this increase was most pronounced in the outer fraction of the gray matter. Similarly, increased diffusivity was noted in the white matter underlying the epileptic cortex. The electrographically normal cortex, in contrast, showeddecreaseddiffusivity in inner and middle cortical fractions compared to the controls. The white matter underlying the electrographically normal cortex did not show any difference in diffusivity between the children with epilepsy and controls. Finally, both the cortical gray matter and the underlying white matter regions showed decreased anisotropy in epileptic as well as electrographically normal regions when compared to controls.


Our results suggest specific patterns of diffusion changes in the cortical fractions and the underlying white matter of the epileptic region compared to electrographically normal and normal control regions. The abnormal increase in diffusivity of the superficial cortex might be associated with microstructural abnormalities commonly seen in layers II through IV of epileptic cortex. Such combined use of a high-resolution structural image to extract the laminar diffusion values, which are highly sensitive to microstructural alterations, could be of clinical value in localizing epileptogenic cortex.

Related Topics

    loading  Loading Related Articles