Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm

    loading  Checking for direct PDF access through Ovid


The purpose was to evaluate a new semi-automated 3D region-growing segmentation algorithm for functional analysis of the left ventricle in multislice CT (MSCT) of the heart. Twenty patients underwent contrast-enhanced MSCT of the heart (collimation 16×0.75 mm; 120 kV; 550 mAseff). Multiphase image reconstructions with 1-mm axial slices and 8-mm short-axis slices were performed. Left ventricular volume measurements (end-diastolic volume, end-systolic volume, ejection fraction and stroke volume) from manually drawn endocardial contours in the short axis slices were compared to semi-automated region-growing segmentation of the left ventricle from the 1-mm axial slices. The post-processing-time for both methods was recorded. Applying the new region-growing algorithm in 13/20 patients (65%), proper segmentation of the left ventricle was feasible. In these patients, the signal-to-noise ratio was higher than in the remaining patients (3.2±1.0 vs. 2.6±0.6). Volume measurements of both segmentation algorithms showed an excellent correlation (all P≤0.0001); the limits of agreement for the ejection fraction were 2.3±8.3 ml. In the patients with proper segmentation the mean post-processing time using the region-growing algorithm was diminished by 44.2%. On the basis of a good contrast-enhanced data set, a left ventricular volume analysis using the new semi-automated region-growing segmentation algorithm is technically feasible, accurate and more time-effective.

Related Topics

    loading  Loading Related Articles