Activin A stimulates the proliferation and differentiation of cardiac fibroblasts via the ERK1/2 and p38-MAPK pathways

    loading  Checking for direct PDF access through Ovid


Activin A is a key regulator of cardiac fibrosis. However, little is known about the mechanisms by which it contributes to cardiac fibrosis. Our study explored the effects of activin A on proliferation and differentiation of adult rat cardiac fibroblasts (CFs) via the activin A receptor, activin receptor-like kinase 4 (ALK4). CF proliferation was measured by CCK8 and EdU assays, while differentiation, fibrosis and signaling were measured by western blot analysis of α-smooth muscle actin, collagen type I, phosphorylated extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (p38-MAPK) expression. Activin A levels were measured by ELISA and western blot analysis. We demonstrated that CFs express activin A and its expression was significantly enhanced by angiotensin II (Ang II), but follistatin (activin A inhibitor) significantly reversed Ang II-induced activin A upregulation, CF proliferation, differentiation, collagen type I expression as well as ERK1/2 and p38-MAPK pathways activation. Conversely, recombinant activin A largely increased these parameters in both the presence and absence of Ang II. Interestingly, p38-MAPK (SB203580) and ALK4 (SB431542) inhibitors significantly reduced all activin A-mediated responses; however, an ERK1/2 inhibitor (PD98059) could only significantly reduce CF proliferation and collagen type I expression but not differentiation. Importantly, the most significant effects were observed in the presence vs. absence of Ang II. Thus, activin A promotes basal and Ang II-induced CF proliferation and differentiation via ALK4, and the effects are partly mediated through the ERK1/2 and p38-MAPK pathways. These data suggest that activin A is a potential therapeutic target for cardiac fibrosis.

Related Topics

    loading  Loading Related Articles