Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Angiotensin II (Ang II), as a crucial factor of endothelial dysfunction, participates in endothelial oxidative damage and inflammation, which is present in all cardiovascular disease (CVD). Celastrol, extracted from Trypterygiun wilfordii Hook F. (“Thunder of God Vine”), is a natural compound with antioxidant and anti-inflammatory activities. In this study, the protective effects of celastrol on human umbilical vein endothelial cell (HUVEC) injury induced by Ang II were observed and its mechanisms were elucidated. Compared with the control group, Ang II significantly increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, enhanced reactive oxygen species levels and proinflammatory cytokines, decreased antioxidant enzyme activities, and suppressed cellular viability and promoted cell apoptosis. It accomplished this via inhibition of the nuclear factor erythroid 2–related factor 2 (Nrf2), increasing the expression levels of Nox2 and AngII type 1 receptor (AT1 receptor), and inducing the phosphorylation of extracellular signal regulated kinase (ERK1/2). In contrast, celastrol effectively suppressed reactive oxygen species generation, improved endothelial cell activity, and ameliorated Ang II-mediated HUVEC injury through activation of Nrf2, inhibition of Nox2/AT1 receptor expression, and upregulated phosphorylation of ERK1/2. After treatment with brusatol, a specific inhibitor of Nrf2, the protective effects of celastrol on Ang II-induced damage in HUVECs were remarkably alleviated. Taken together, celastrol-induced activation of Nrf2 and inhibition of NADPH oxidase activity were critical for the inhibition of Ang II-mediated endothelial dysfunction, and demonstrated the potential application of celastrol in CVD therapy.

Related Topics

    loading  Loading Related Articles