Losartan protects against cerebral ischemia/reperfusion-induced apoptosis through β-arrestin1-mediated phosphorylation of Akt

    loading  Checking for direct PDF access through Ovid

Abstract

Losartan, an angiotensin (Ang) II type 1 receptor blocker (ARB), has been revealed to protect against cerebral ischemia/reperfusion (I/R) injury. However, the mechanism by which losartan protect brain ischemia injury is still obscure. In this study, we investigated whether losartan protected against cerebral I/R injury by reducing apoptosis and the possible signaling pathways. Wistar rats were pretreated for 14 days with 5 mg/kg losartan, and then subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. Meanwhile, PC12 cells pretreated with losartan were exposed to oxygen-glucose deprivation-reoxygenation (OGD/R), an in vitro model of cerebral ischemia. Our results showed that administration of losartan significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the protein level of cleaved caspase-3, cytochrom C and Bax, and increasing the level of Bcl-2 both in vivo and in vitro. Moreover, losartan treatment markedly enhanced the phosphorylation of Akt and blockade of PI3K activity by wortmannin dramatically inhibited Akt phosphorylation and attenuated the anti-apoptotic effect of losartan. Furthermore, pretreatment with losartan significantly increased the protein level of β-arrestin1 and silence of β-arrestin1 by siRNA partly attenuated losartan-induced anti-apoptotic effect and the phosphorylation of Akt. These results suggested that β-arrestin1 modulated the activation of Akt in losartan-induced anti-apoptotic effect in cerebral I/R. Our data would provide a new molecular basis for further understanding of protective effect of losartan in cerebral I/R injury and may provide benefits of using losartan in the treatment of cerebrovascular disease.

Related Topics

    loading  Loading Related Articles