Effective suppression of donor specific antibody production by Cathepsin S inhibitors in a mouse transplantation model

    loading  Checking for direct PDF access through Ovid

Abstract

Donor-specific antibodies (DSA) are a major risk factor for antibody-mediated rejection (ABMR) in solid organ transplantation, and ABMR remains a medical challenge. Therefore, effective anti-ABMR therapies are needed to improve overall graft survival. Cathepsin S (Cat S) is an essential protease for antigen peptide loading onto lysosomal/endosomal major histocompatibility complex (MHC) class II molecules to promote antigen presentation. Cat S deficiency produces immuno-deficient phenotypes including a suppressed humoral immune response, and Cat S inhibition reportedly prevents autoimmunity. However, little is known about the effects of Cat S inhibitors on organ transplantation, especially ABMR. Here, we report the pharmacological profile of novel Cat S inhibitors, AS2761325 and AS2863995, and explore their preventive potential on DSA production and acute rejection in a mouse cardiac transplantation model. Cat S inhibitors potently inhibited upregulation of antigen peptide loading MHC class II expression on the surface of splenic B cells and suppressed ovalbumin-induced T cell-dependent antibody production in mice. In a mouse cardiac transplantation model, oral administration of AS2761325 monotherapy inhibited DSA production without affecting graft survival. When combined with a suboptimal dose of tacrolimus, AS2761325 significantly prolonged graft survival. The more potent Cat S inhibitor AS2863995 also prolonged graft survival and almost completely suppressed DSA production. These results suggest that Cat S inhibitors may be promising ABMR prophylaxis drug candidates. Combination therapy comprising a Cat S inhibitor and calcineurin inhibitors may be a more effective immunosuppressive maintenance therapy for controlling both cell-mediated and antibody-mediated rejection.

Related Topics

    loading  Loading Related Articles