Discovery of a novel neuroprotective compound, AS1219164, by high-throughput chemical screening of a newly identified apoptotic gene marker

    loading  Checking for direct PDF access through Ovid


We have reported that tacrolimus (FK506), an immunosuppressive drug, and diclofenac, a non-steroidal anti-inflammatory drug, possess different modes of neuroprotective action. FK506 suppresses only thapsigargin-induced apoptosis in neuroblastoma SH-SY5Y cells while diclofenac reverses tunicamycin-induced as well as thapsigargin-induced apoptosis. The aim of this study is to discover novel compounds that exert neuroprotective properties by using the transcriptional response of a newly identified gene, which was regulated by both FK506 and diclofenac, as a surrogate screening marker in high-throughput chemical screening and characterize the compounds in comparison with FK506 and diclofenac. Using a microarray with 4504 human cDNAs and quantitative RT-PCR, two genes as apoptotic markers, transmembrane protein 100 (TMEM100) and limb-bud and heart (LBH), were identified because the thapsigargin-induced elevations in their mRNA levels were reversed by both FK506 and diclofenac. A luciferase reporter assay with a TMEM100 promoter region was applied to high-throughput chemical screening. AS1219164, {3-[(E)-2-{5-[(E)-2-pyridin-4-ylvinyl]pyridin-3-yl} vinyl]aniline}, suppressed thapsigargin-induced transactivation of the TMEM100 gene and reversed thapsigargin-induced increases in TMEM100 and LBH mRNA levels in SH-SY5Y cells, similar to the effects of FK506 and diclofenac. Furthermore, AS1219164 protected against SH-SY5Y cell death induced by four apoptotic agents including thapsigargin, similar to diclofenac, but was more potent than diclofenac, while FK506 only showed protective effects against thapsigargin-induced cell death. In conclusion, a novel neuroprotecitve compound, AS1219164, was discovered by high-throughput chemical screening using a reporter assay with the TMEM100 gene promoter regulated by both FK506 and diclofenac. Reporter assay using the promoter region of a gene under pharmacological and physiological transcriptional regulation would be well suit for use in high-throughput chemical screening.

    loading  Loading Related Articles