The evolution of body size in birds. II. The role of reproductive power

    loading  Checking for direct PDF access through Ovid

Abstract

Given that body mass evolves non-randomly in birds, it is important to ask what factors might be responsible. One suggestion is that the rate at which individuals turn resources into offspring, termed ‘reproductive power’, might explain this non-randomness. This is because, in mammals, the body mass with the highest reproductive power is the most common (modal) one. Reproductive power was estimated for birds from data on energetic content of eggs and population productivity. According to the formulation of Brown et al. (1993), reproductive power is composed of two component processes: acquisition (acquiring resources and storing them in reproductive biomass) and conversion (converting reproductive biomass into offspring). As with mammals, estimates of reproductive power indicate that the most common body mass in birds is also the body mass that maximizes reproductive power. The relationship between reproductive power and diversity is different for species smaller than this modal body mass when compared to those that are larger. The relationship of body mass and reproductive power is different between birds and mammals in two ways: (1) the body mass that maximizes reproductive power is smaller in birds (33g) than in mammals (100g), and (2) mammals generate more reproductive power than an equivalent-sized bird. Reproductive power is determined primarily by acquisition in small birds and mammals, while it is determined by conversion in the largest birds and mammals. It is likely that reproductive power is closely tied to the evolution and diversification of body masses because it constrains the ways in which traits affecting fitness can evolve.

Related Topics

    loading  Loading Related Articles