Measuring Natural Selection on Proportional Traits: Comparisons of Three Types of Selection Estimates for Resistance and Susceptibility to Herbivore Damage

    loading  Checking for direct PDF access through Ovid


To compare the strength of natural selection on different traits and in different species, evolutionary biologists typically estimate selection differentials and gradients in standardized units. Measuring selection differentials and gradients in standard deviation units or mean-standardized units facilitates such comparisons by converting estimates with potentially varied units to a common scale. In this note, I compare the performance of variance- and mean-standardized selection differentials and gradients for a unique and biologically important class of traits: proportional traits, that can only vary between zero and one, and their complements (1 minus the trait) using simple algebra and analysis of data from a field-study using morning glories. There is a systematic, mathematical relationship between unstandardized and variance-standardized selection gradients for proportional traits and their complements, but such a general relationship is lacking for mean-standardized gradients, potentially leading investigators to mistakenly conclude that a proportional change in a trait would have little effect on fitness. Despite this potential limitation, mean-standardized selection differentials and gradients represent a useful tool for studying natural selection on proportional traits, because by definition they measure how proportional changes in the mean of a trait lead to proportional changes in relative fitness.

    loading  Loading Related Articles