Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    loading  Checking for direct PDF access through Ovid

Abstract

Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies.

Related Topics

    loading  Loading Related Articles