miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin

    loading  Checking for direct PDF access through Ovid

Abstract

Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and the androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa.

Graphical abstract

miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer.

Related Topics

    loading  Loading Related Articles