Remifentanil Maintains Lower Initial Delayed Nonmatching-to-Sample Accuracy Compared to Food Pellets in Male Rhesus Monkeys

    loading  Checking for direct PDF access through Ovid

Abstract

Emerging human laboratory and preclinical drug self-administration data suggest that a history of contingent abused drug exposure impairs performance in operant discrimination procedures, such as delayed nonmatching-to-sample (DNMTS), that are hypothesized to assess components of executive function. However, these preclinical discrimination studies have exclusively used food as the reinforcer and the effects of drugs as reinforcers in these operant procedures are unknown. The present study determined effects of contingent intravenous remifentanil injections on DNMTS performance hypothesized to assess 1 aspect of executive function, working memory. Daily behavioral sessions consisted of 2 components with sequential intravenous remifentanil (0, 0.01–1.0 μg/kg/injection) or food (0, 1–10 pellets) availability in nonopioid dependent male rhesus monkeys (n = 3). Remifentanil functioned as a reinforcer in the DNMTS procedure. Similar delay-dependent DNMTS accuracy was observed under both remifentanil- and food-maintained components, such that higher accuracies were maintained at shorter (0.1–1.0 s) delays and lower accuracies approaching chance performance were maintained at longer (10–32 s) delays. Remifentanil maintained significantly lower initial DNMTS accuracy compared to food. Reinforcer magnitude was not an important determinant of DNMTS accuracy for either remifentanil or food. These results extend the range of experimental procedures under which drugs function as reinforcers. Furthermore, the selective remifentanil-induced decrease in initial DNMTS accuracy is consistent with a selective impairment of attentional, but not memorial, processes.

Related Topics

    loading  Loading Related Articles