Thymic stromal lymphopoietin exerts antimicrobial activities

    loading  Checking for direct PDF access through Ovid

Abstract

Thymic stromal lymphopoietin (TSLP) is an interleukin-7-like cytokine expressed by epithelial cells and reported to be involved in allergic diseases and atopic eczema. The presence of several predicted α-helical regions in TSPL, a structure characterizing many classical antimicrobial peptides (AMPs), prompted us to investigate whether TSLP exerts antimicrobial activities. Recombinant human TSLP exerted antimicrobial activity, particularly against Gram-negative bacteria. Using synthetic overlapping peptide 20-mers of TSLP, it was demonstrated that the antimicrobial effect is primarily mediated by the C-terminal region of the protein. MKK34 (MKKRRKRKVTTNKCLEQVSQLQGLWRRFNRPLLK), a peptide spanning a C-terminal α-helical region in TSLP, showed potent antimicrobial activities, in physiological salt conditions and in the presence of human plasma. Fluorescent studies of peptide-treated bacteria, electron microscopy and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of the classical AMP LL-37. Moreover, TSLP was degraded into multiple fragments by staphylococcal V8 proteinase. One major antimicrobial degradation fragment was found to encompass the C-terminal antimicrobial region defined by the MKK34 peptide. We here describe a novel antimicrobial role for TSLP. The antimicrobial activity is primarily mediated by the C-terminal part of the protein. In combination with the previously known cytokine function of TSLP, our result indicates dual functions of the molecule and a previously unknown role in host defense.

Related Topics

    loading  Loading Related Articles