Hyperglycemia promotes vasculogenesis in choroidal neovascularization in diabetic mice by stimulating VEGF and SDF-1 expression in retinal pigment epithelial cells

    loading  Checking for direct PDF access through Ovid

Abstract

To investigate the influence of hyperglycemia on the severity of choroidal neovascularization (CNV) in diabetic mice, especially the involvement of bone marrow-derived cells (BMCs) and underlying molecular mechanisms. The mice were randomly divided into control group, diabetes group and diabetes treated with insulin group, which were laser treated to induce CNV. The CNV severity was evaluated by fundus fluorescein angiography, HE staining and choroidal flatmount. The BMCs recruitment and differentiation in CNV were examined in GFP chimeric mice by choroidal flatmount and immunofluorescence. The bone marrow-derived mesenchymal stem cells (BMSCs) recruitment and migration were tested in vivo and in vitro. VEGF and SDF-1 production in vivo and in vitro were tested by realtime PCR and ELISA. The CNV severity and expression of VEGF and SDF-1 were enhanced in DM mice compared with control mice and that insulin treatment decreased CNV severity in DM mice. The DM mice demonstrated more BMCs and bone marrow-derived mesenchymal stem cells (BMSCs) recruited and incorporated into CNV, increased ratio of BMCs expressing endothelial cell marker or macrophage marker, and up-regulated expression of VEGF and SDF-1 in CNV. Human BMSCs migration and expression of VEGF and SDF-1 in retinal pigment epithelial (RPE) cells increased when cultured under high glucose. This study suggested that hyperglycemia enhanced the expression of VEGF and SDF-1 in RPE cells, and promoted recruitment and incorporation of BMCs and affected differentiation of BMCs in CNV, which led to more severe CNV in diabetic mice.

Related Topics

    loading  Loading Related Articles