Neuroprotective effect of cannabinoid receptor 1 antagonist in the MNU-induced retinal degeneration model

    loading  Checking for direct PDF access through Ovid

Abstract

Endocannabinoid system involves in neuroprotective effects on the central neural system. The cannabinoid receptor 1 (CB1R) is widely expressed in the mouse retina. However, the role of cannabinoid receptors in the retina remains unclear. In this work, we established a photoreceptor degeneration mouse model via N-methyl-N-nitrosourea (MNU) administration to identify the neuroprotective effects of cannabinoid receptors. The MNU-induced retinal degeneration behaves similarly to that in the human retinitis pigmentosa (RP). Administration of the CB1R antagonist SR141716A distinctly recovered the photoreceptor loss, decreased glial reactivity and reduced abnormal vascular complexes in an MNU-induced mouse model. The BC dendrites were shrunk in the MNU-treated retina with eliminated ON-BCs responses and partially diminished OFF-BCs responses in patch-clamp recordings. In the MNU + SR1 group, both the function and structure of ON-BCs recovered. Taken together, our study showed that the inhibition of CB1R can effectively prevent MNU-induced retinal degeneration, suggesting a potential therapeutic effect of the CB1R antagonist SR1 in retinal degeneration diseases.

Related Topics

    loading  Loading Related Articles