Glial activation in white matter following ischemia in the neonatal P7 rat brain

    loading  Checking for direct PDF access through Ovid


This study examines cell death and proliferation in the white matter after neonatal stroke. In postnatal day 7 injured rat, there was a marked reduction in myelin basic protein (MBP) immunostaining mainly corresponding to numerous pyknotic immature oligodendrocytes and TUNEL-positive astrocytes in the ipsilateral external capsule. In contrast, a substantial restoration of MBP, as indicated by the MBP ratio of left-to-right, occurred in the cingulum at 48 (1.27 ± 0.12) and 72 (1.30 ± 0.18, P < 0.05) h of recovery as compared to age-matched controls (1.03 ± 0.14). Ki-67 immunostaining revealed a first peak of newly generated cells in the dorsolateral hippocampal subventricular zone and cingulum at 72 h after reperfusion. Double immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 48 h and NG2 pre-oligodendrocytes at 72 h of recovery. Microglia infiltration occurs over several days in the cingulum, and a huge quantity of macrophages reached the subcortical white matter where they engulfed immature oligodendrocytes. The overall results suggest that the persistent activation of microglia involves a chronic component of immunoinflammation, which overwhelms repair processes and contributes to cystic growth in the developing brain.

Related Topics

    loading  Loading Related Articles