Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat

    loading  Checking for direct PDF access through Ovid

Abstract

Stroke is the leading cause of adult disability in the United States. To date there is no satisfactory treatment for stroke once neuronal damage has occurred. Human adult bone marrow-derived somatic cells (hABM-SC) represent a homogenous population of CD49c/CD90 co-positive, non-hematopoietic cells that have been shown to secrete therapeutically relevant trophic factors and to support axonal growth in a rodent model of spinal cord injury. Here we demonstrate that treatment with hABM-SC after ischemic stroke in adult rats results in recovery of forelimb function on a skilled motor test, and that this recovery is positively correlated with increased axonal outgrowth of the intact, uninjured corticorubral tract. While the complete mechanism of repair is still unclear, we conclude that enhancement of structural neuroplasticity from uninjured brain areas is one mechanism by which hABM-SC treatment after stroke leads to functional recovery.

Related Topics

    loading  Loading Related Articles