Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration

    loading  Checking for direct PDF access through Ovid


The delivery of a nerve insult (a “conditioning lesion”) prior to a subsequent test lesion increases the number of regenerating axons and accelerates the speed of regeneration from the test site. A major barrier to clinical translation is the lack of an ethically acceptable and clinically feasible method of conditioning that does not further damage the nerve. Conditioning electrical stimulation (CES), a non-injurious intervention, has previously been shown to improve neurite outgrowth in vitro. In this study, we examined whether CES upregulates regeneration-associated gene (RAG) expression and promotes nerve regeneration in vivo, similar to a traditional nerve crush conditioning lesion (CCL). Adult rats were divided into four cohorts based on conditioning treatment to the common peroneal (fibular) nerve: i) CES (1 h, 20 Hz); ii) CCL (10 s crush); iii) sham CES (1 h, 0 Hz); or iv) naïve (unconditioned). Immunofluorescence and qRT-PCR revealed significant RAG upregulation in the dorsal root ganglia of both CES and CCL animals, evident at 3–14 days post-conditioning. To mimic a clinical microsurgical nerve repair, all cohorts underwent a common peroneal nerve cut and coaptation one week following conditioning. Both CES and CCL animals increased the length of nerve regeneration (3.8-fold) as well as the total number of regenerating axons (2.2-fold), compared to the sham and naïve-conditioned animals (p < 0.001). These data support CES as a non-injurious conditioning paradigm that is comparable to a traditional CCL and is therefore a novel means to potentially enhance peripheral nerve repair in the clinical setting.

Related Topics

    loading  Loading Related Articles