Glucocorticoids as regulatory signals during intrauterine development

    loading  Checking for direct PDF access through Ovid

Abstract

Glucocorticoids are important regulatory signals during intrauterine development. They act as maturational, environmental and programming signals that modify the developing phenotype to optimize offspring viability and fitness. They affect development of a wide range of fetal tissues by inducing changes in cellular expression of structural, transport and signalling proteins, which have widespread functional consequences at the whole organ and systems levels. Glucocorticoids, therefore, activate many of the physiological systems that have little function in utero but are vital at birth to replace the respiratory, nutritive and excretory functions previously carried out by the placenta. However, by switching tissues from accretion to differentiation, early glucocorticoid overexposure in response to adverse conditions can programme fetal development with longer term physiological consequences for the adult offspring, which can extend to the next generation. The developmental effects of the glucocorticoids can be direct on fetal tissues with glucocorticoid receptors or mediated by changes in placental function or other endocrine systems. At the molecular level, glucocorticoids can act directly on gene transcription via their receptors or indirectly by epigenetic modifications of the genome. In this review, we examine the role and functional significance of glucocorticoids as regulatory signals during intrauterine development and discuss the mechanisms by which they act in utero to alter the developing epigenome and ensuing phenotype.

Related Topics

    loading  Loading Related Articles