An integrated perspective and functional impact of the mitochondrial acetylome

    loading  Checking for direct PDF access through Ovid

Abstract

Growing evidence suggests that a range of reversible protein post-translational modifications such as acetylation regulates mitochondria signalling, impacting cellular homeostasis. However, the extent of this type of regulation in the control of mitochondria functionality is just beginning to be discovered, aided by the availability of high-resolution mass spectrometers and bioinformatic tools. Data mining from literature on protein acetylation profiling focused on mitochondria isolated from tissues retrieved more than 1395 distinct proteins, corresponding to more than 4858 acetylation sites. ClueGo analysis of identified proteins highlighted oxidative phosphorylation, tricarboxylic acid cycle, fatty acid oxidation and amino acid metabolism as the biological processes more prone to regulation through acetylation. This review also examines the physiological relevance of protein acetylation on the molecular pathways harbored in mitochondria under distinct pathophysiological conditions as caloric restriction and alcohol-induced liver damage. This integrative perspective will certainly help to envisage future studies targeting the regulation of mitochondrial functionality.

Related Topics

    loading  Loading Related Articles