On Statistical Inference Based on Record Values

    loading  Checking for direct PDF access through Ovid

Abstract

We develop methodology for conducting inference based on record values and record times derived from a sequence of independent and identically distributed random variables. The advantage of using information about record times as well as record values is stressed. This point is a subtle one, since if the sampling distribution F is continuous then there is no information at all about F in the record times alone; the joint distribution of any number of them does not depend on F. However, the record times and record values jointly contain considerably more information about F than do the record values alone. Indeed, in the case of a distribution with regularly varying tails, the rate of convergence of the exponent of regular variation is two orders of magnitude faster if information about record times is included. Optimal estimators and convergence rates are derived under simple, specific models, and shown to be surprisingly robust against significant departures from those models. However, even under our special models the estimators have irregular properties, including an undefined information matrix. To some extent these difficulties may be alleviated by conditioning and by considering the relationship between maximum likelihood and maximum probability estimators.

Related Topics

    loading  Loading Related Articles