Extended Ciprofloxacin Release Using Vitamin E Diffusion Barrier From Commercial Silicone-Based Soft Contact Lenses

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives:

Ciprofloxacin (Cipro) is an antibiotic, widely used in form of ophthalmic drops (0.3%) for the treatment of eye infections. In this study, vitamin E was used as a hydrophobic barrier to improve and prolong the amount and time of Cipro release from silicone-based soft contact lenses.

Methods:

Three different commercial contact lenses (Air Optix, Biofinity, and Acuvue Oasys) were soaked in vitamin E solutions (0.1 and 0.2 g/mL). The effect of vitamin E on Cipro loading amount and drug releasing profile was evaluated in artificial tear. Swelling properties and diameter changes of the lenses were also investigated in aqueous media in presence and absence of vitamin E.

Results:

The data indicated that vitamin E, as a hydrophobic barrier, significantly decreased the water content of silicone-based soft contact lenses. After vitamin E loading, a 5% to 18% increase was observed in lens diameter in the hydrated state, whereas the lens diameter increased by 11% to 23% in the dry state. In all commercial lenses, vitamin E loading in a 0.2-g/mL solution caused a 27.94% to 37.08% increase in Cipro binding. The results indicated that applying vitamin E loading solutions, with 0.1 and 0.2 g/mL concentrations, could effectively enhance Cipro release time from 2 hr (in a pure non-vitamin E–loaded lens) to 14 to 17 and 30 to 33 days, respectively. These values showed an increase by a factor of 168 to 204 and 360 to 396 in Cipro release time after using vitamin E loading solutions with 0.1 and 0.2 g/mL concentrations, respectively, compared with pure non-vitamin E–loaded soft contact lenses.

Conclusions:

This study indicated that vitamin E acts as an effective hydrophobic barrier, in increasing the Cipro loading capacity of silicone-based contact lenses and prolonging the drug release into the artificial tear.

Related Topics

    loading  Loading Related Articles