Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging


    loading  Checking for direct PDF access through Ovid

Abstract

Aging is accompanied by gradual cellular dysfunction associated with an accumulation of damaged proteins, particularly via oxidative processes. This cellular dysfunction has been attributed, at least in part, to impairment of mitochondrial function as this organelle is both a major source of oxidants and a target for their damaging effects, which can result in a reduction of energy production, thereby compromising cell function. In the present study, we observed a significant decrease in the respiratory activity of rat liver mitochondria with aging, and an increase in the advanced glycation endproduct-modified protein level in the mitochondrial matrix. Western blot analysis of the glycated protein pattern after 2D electrophoresis revealed that only a restricted set of proteins was modified. Within this set, we identified, by mass spectrometry, proteins connected with the urea cycle, and especially glutamate dehydrogenase, which is markedly modified in older animals. Moreover, mitochondrial matrix extracts exhibited a significant decrease in glutamate dehydrogenase activity and altered allosteric regulation with age. Therefore, the effect of the glycating agent methylglyoxal on glutamate dehydrogenase activity and its allosteric regulation was analyzed. The treated enzyme showed inactivation with time by altering both catalytic properties and allosteric regulation. Altogether, these results showed that advanced glycation endproduct modifications selectively affect mitochondrial matrix proteins, particularly glutamate dehydrogenase, a crucial enzyme at the interface between tricarboxylic acid and urea cycles. Thus, it is proposed that glycated glutamate dehydrogenase could be used as a biomarker of cellular aging. Furthermore, these results suggest a role for such intracellular glycation in age-related dysfunction of mitochondria.

    loading  Loading Related Articles