Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview

    loading  Checking for direct PDF access through Ovid


The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH) is well known for its role in the control of pituitary gonadotropin secretion, but the hormone and receptor are also expressed in extrapituitary tissues and tumor cells, including epithelial ovarian cancers. It is hypothesized that they may function as a local autocrine regulatory system in nonpituitary contexts. Numerous studies have demonstrated a direct antiproliferative effect on ovarian cancer cell lines of GnRH and its synthetic analogs. This effect appears to be attributable to multiple steps in the GnRH signaling cascade, such as cell cycle arrest at G0/G1. In contrast to GnRH signaling in pituitary gonadotropes, the involvement of Gαq, protein kinase C and mitogen-activated protein kinases is less apparent in neoplastic cells. Instead, in ovarian cancer cells, GnRH receptors appear to couple to the pertussis toxin-sensitive protein Gαi, leading to the activation of protein phosphatase, which in turn interferes with growth factor-induced mitogenic signals. Apoptotic involvement is still controversial, although GnRH analogs have been shown to protect cancer cells from doxorubicin-induced apoptosis. Recently, data supporting a regulatory role of GnRH analogs in ovarian cancer cell migration/invasion have started to emerge. In this minireview, we summarize the current understanding of the antiproliferative actions of GnRH analogs, as well as the recent observations of GnRH effects on ovarian cancer cell apoptosis and motogenesis. The molecular mechanisms that mediate GnRH actions and the clinical applications of GnRH analogs in ovarian cancer patients are also discussed.

    loading  Loading Related Articles