The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation


    loading  Checking for direct PDF access through Ovid

Abstract

Protein arginine methyltransferase (PRMT)1 is the predominant type I methyltransferase in mammals. In the present study, we used zebrafish (Danio rerio) as the model system to elucidate PRMT1 expression and function during embryogenesis. Zebrafish prmt1 transcripts were detected from the zygote period to the early larva stage. Knockdown of prmt1 by antisense morpholino oligo (AMO) resulted in delayed growth, shortened body-length, curled tails and cardiac edema. PRMT1 protein level, type I protein arginine methyltransferase activity, specific asymmetric protein arginine methylation and histone H4 R3 methylation all decreased in the AMO-injected morphants. The morphants showed defective convergence and extension and the abnormalities were more severe at the posterior than the anterior parts. Cell migration defects suggested by the phenotypes were not only observed in the morphant embryos, but also in a cellular prmt1 small-interfering RNA knockdown model. Rescue of the phenotypes by co-injection of wild-type but not catalytic defective prmt1 mRNA confirmed the specificity of the AMO and the requirement of methyltransferase activity in early development. The results obtained in the present study demonstrate a direct link of early development with protein arginine methylation catalyzed by PRMT1.

    loading  Loading Related Articles