Cu(I)- and proton-binding properties of the first N-terminal soluble domain ofBacillus subtilisCopA


    loading  Checking for direct PDF access through Ovid

Abstract

CopA, a P-type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1-like domains separated by a short linker at its N-terminus, an arrangement that occurs widely in copper transporters from both prokaryotes and eukaryotes. Both domains were previously found to bind Cu(I) with very high affinity. Above a level of 1 Cu(I) per CopAab, dimerization occurred, leading to a highly luminescent multinuclear Cu(I) species [Singleton C & Le Brun NE (2009) Dalton Trans, 688–696]. To try to understand the contributions of each domain to the complex Cu(I)-binding behaviour of this and related proteins, we purified a wild-type form of the first domain (CopAa). In isolation, the domain bound Cu(I) with very high affinity (K = ˜ 1 × 1018 m−1) and underwent Cu(I)-mediated protein association, resulting in a mixture of dimer and tetramer species. Addition of further Cu(I) up to 1 Cu(I) per CopAa monomer led to a weakly luminescent species, whereas further additions [2 Cu(I) per CopAa monomer] resulted in protein unfolding. Analysis of the MTCAAC binding motif Cys residue acid–base properties revealed pKa values of 5.7 and 7.3, consistent with the pH dependence of Cu(I) binding, and with the proposal that low proton affinity is associated with high Cu(I) affinity. Finally, Cu(I) exchange between CopAa and the chelator bathocuproine sulfonate revealed rapid exchange in both directions, demonstrating an interaction between the protein and the chelator that catalyses metal ion transfer. Overall, CopAa exhibits similarities to CopAab in terms of affinity and complexity of Cu(I) binding, but the details of Cu(I) binding are distinct.Structured digital abstractCopA and CopA bind by molecular sieving (View interaction)CopA and CopA bind by cosedimentation in solution (View interaction)CopA, a P-type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1-like domains separated by a short linker at its N-terminus. Here, the first soluble domain in isolation, CopAa, was found to exhibit complex high affinity Cu(I)-binding behaviour involving multiple ions and protein association. These properties are distinct from those of the two domain protein CopAab.

    loading  Loading Related Articles