Identification of novel peptides from amphibian (Xenopus tropicalis) skin by direct tissue MALDI-MS analysis

    loading  Checking for direct PDF access through Ovid

Abstract

Twelve novel peptides (Pxt-1 to Pxt-12) were isolated from the skin of Xenopus tropicalis, diploid frogs, using topological MS analysis. Among them, Pxt-8, Pxt-9, and Pxt-10 were the N terminus of Pxt-1, N terminus of Pxt-3 and C terminus of Pxt-11, respectively. The Pxt-3 and Pxt-11 peptides shared significant sequence homologies with magainins 1, -2 and levitide, respectively, which all isolated from X. laevis. Pxt-12 was identical to the X. tropicalis XT-6-like precursor previously isolated by ESI-MS/MS. None of the Pxt peptides contained any Cys, Asp, Tyr or Trp, although Leu and Lys were frequently found as typical frog-skin peptides. RT-PCR analysis confirmed the gene expressions of Pxt-2, Pxt-3, Pxt-4, Pxt-5, Pxt-7 and Pxt-11 in X. tropicalis skin. Several ion peaks corresponding to all identified Pxt peptides were observed with MALDI-MS analysis of X. tropicalis secretory fluids, collected after in vivo stimulation, which suggested that Pxt peptides were definitely secretory molecules. CD studies and Schiffer–Edmundson helical wheel projections suggested that Pxt-5, as well as mastoparan, at least, could form a typical amphiphilic α helix without a phospholipid or a membrane-mimetic solvent (trifluoroethanol). Moreover, Pxt-2 and Pxt-5 showed growth inhibitory effects on both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Measurements of dynamic light scattering and the surface tensions of Pxt peptides solutions suggested that both Pxt-2 and Pxt-5 could form associations as micelles and behave like a general surfactant. Moreover, the remarkable foaming properties of Pxt-2 and Pxt-5 were observed, as well as those of the secretory fluids of X. tropicalis.

Twelve novel peptides (Pxt-1–12) were isolated from the skin of Xenopus tropicalis, using topological mass spectrometry analysis. Several ion peaks corresponding to all identified Pxt peptides, were observed with MALDI-MS analysis of X. tropicalis secretory fluids, collected after in vivo stimulation suggesting that Pxt peptides were definitely secretory molecules. The remarkable foaming properties of Pxt-2 and Pxt-5 were observed.

Related Topics

    loading  Loading Related Articles