Occurrence and biosynthesis of 3-mercaptopropionic acid in Methanocaldococcus jannaschii

    loading  Checking for direct PDF access through Ovid

Abstract

In a non-targeted analysis of thiol-containing compounds in the hyperthermophilic methanogen Methanocaldococcus jannaschii, we discovered three unexpected metabolites: 3-mercaptopropionic acid (MPA), 2-hydroxy-4-mercaptobutyric acid (HMBA) and 4-mercapto-2-oxobutyric acid (MOB). HMBA and MOB have never been reported as natural products, while MPA is highly prevalent in aquatic environments as a result of biotic and abiotic processing of sulfur-containing compounds. This report provides evidence that HMBA and MOB are part of a biosynthetic pathway to generate MPA in M. jannaschii. We show that HMBA can be biosynthesized from malate semialdehyde and hydrogen sulfide, likely using a mechanism similar to that proposed for coenzyme M, coenzyme B and homocysteine biosynthesis in methanogens, where an aldehyde is converted to a thiol. The L-sulfolactate dehydrogenase, derived from the MJ1425 gene, is shown to catalyze the NAD-dependent oxidation of HMBA to MOB. Finally, we demonstrate that HMBA can be used as a biosynthetic precursor to MPA in M. jannaschii cell extracts. This proposed pathway may contribute to the wide occurrence of MPA in marine environments and indicates that MPA must serve some important function in M. jannaschii.

Related Topics

    loading  Loading Related Articles