Identification of four type II toxin-antitoxin systems inActinobacillus pleuropneumoniae

    loading  Checking for direct PDF access through Ovid

Abstract

Toxin-antitoxin (TA) systems are small genetic elements that are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in various bacteria and proposed to play an important role in bacterial physiology and virulence. However, their presence in the genomes of Actinobacillus species has received no attention. In this study, we describe the identification of four type II TA systems in Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Reverse transcription PCR analysis revealed that the genes encoding the toxin and antitoxin are co-transcribed. Overexpression of each toxin inhibited the growth of Escherichia coli, and the toxic effect could be counteracted by its cognate antitoxin. The pull-down experiments demonstrated that each toxin interacts with its cognate antitoxin in vivo. The promoter activity assays showed that each antitoxin could autoregulate either positively or negatively the TA operon transcription. In addition, the APJL_0660/0659 TA system is present in half of the detected serovars of A. pleuropneumoniae, while the others are present in all. Collectively, we identified four type II TA systems in A. pleuropneumoniae, and this study has laid the foundation for further functional study of these TA systems.

Related Topics

    loading  Loading Related Articles