Development of lysophosphatidic acid pathway modulators as therapies for fibrosis

    loading  Checking for direct PDF access through Ovid

Abstract

Lysophosphatidic acid (LPA) is a class of bioactive phospholipid that displays a wide range of cellular effects via LPA receptors, of which six have been identified (LPAR1–6). In serum and plasma, LPA production occurs mainly by the hydrolysis of lysophosphatidylcholine by the phospholipase D activity of autotaxin (ATX). The involvement of the LPA pathway in driving chronic wound-healing conditions, such as idiopathic pulmonary fibrosis, has suggested targets in this pathway could provide potential therapeutic approaches. Mice with LPAR1 knockout or tissue-specific ATX deletion have demonstrated reduced lung fibrosis following bleomycin challenge. Therefore, strategies aimed at antagonizing LPA receptors or inhibiting ATX have gained considerable attention. This Review will summarize the current status of identifying small-molecule modulators of the LPA pathway. The therapeutic utility of LPA modulators for the treatment of fibrotic diseases will soon be revealed as clinical trials are already in progress in this area.

Related Topics

    loading  Loading Related Articles