Reichenbachian Common Cause Systems of Arbitrary Finite Size Exist

    loading  Checking for direct PDF access through Ovid


A partition {Ci}i ∈ I of a Boolean algebra Ω in a probability measure space (Ω, p) is called a Reichenbachian common cause system for the correlation between a pair A,B of events in Ω if any two elements in the partition behave like a Reichenbachian common cause and its complement; the cardinality of the index set I is called the size of the common cause system. It is shown that given any non-strict correlation in (Ω, p), and given any finite natural number n > 2, the probability space (Ω,p) can be embedded into a larger probability space in such a manner that the larger space contains a Reichenbachian common cause system of size n for the correlation.

Related Topics

    loading  Loading Related Articles