Regulation of growth, fatty acid composition and delta 6 desaturase expression by dietary lipids in gilthead seabream larvae (Sparus aurata)

    loading  Checking for direct PDF access through Ovid


The Δ6 and Δ5 desaturases and elongases show only very limited activity in marine fish, and little is known of the possibility of enhancing Δ6 desaturase gene expression in these fish. The use of plant oils in marine fish diets is limited by their lack of n−3 highly unsaturated fatty acids (HUFA) despite an abundant content of the 18C fatty acid precursor linoleic and α-linolenic acids. The objective of the present study was to determine the ability of larval gilthead seabream to utilize vegetable oils and assess the nutritional regulation of Δ6 desaturase gene expression. Seventeen-day-old gilthead seabream larvae were fed during a 17-day period with one of four different microdiets formulated with either sardine fish oil (FO), soybean, rapeseed or linseed oils, respectively, or a fifth diet containing defatted squid meal and linseed oil. Good larval survival and growth, both in terms of total length and body weight, were obtained by feeding the larvae either rapeseed, soybean or linseed oils. The presence of vegetable oils in the diet increased the levels of 20:2n−9 and 20:2n−6, 18:2n−9, 18:3n−6, 20:3n−6 and 20:4n−6, in larvae fed rapeseed and soybean oils in comparison to those fed FO. In addition, a sixfold increase in the relative expression of Δ6 desaturase-like gene was found in larvae fed rapeseed and soybean oils, denoting the nutritional regulation of desaturase activity through its gene expression in this fish species. However, feeding linseed oil did not increase the expression of the Δ6 desaturase gene to such a high extent.

Related Topics

    loading  Loading Related Articles