Ascorbate enhances the toxicity of the photodynamic action of Verteporfin in HL-60 cells

    loading  Checking for direct PDF access through Ovid


As a reducing agent, ascorbate serves as an antioxidant. However, its reducing function can in some settings initiate an oxidation cascade, i.e., seem to be a “pro-oxidant.” This dichotomy also seems to hold when ascorbate is present during photosensitization. Ascorbate can react with singlet oxygen, producing hydrogen peroxide. Thus, if ascorbate is present during photosensitization the formation of highly diffusible hydrogen peroxide could enhance the toxicity of the photodynamic action. On the other hand, ascorbate could decrease toxicity by converting highly reactive singlet oxygen to less reactive hydrogen peroxide, which can be removed via peroxide-removing systems such as glutathione and catalase. To test the influence of ascorbate on photodynamic treatment we incubated leukemia cells (HL-60 and U937) with ascorbate and a photosensitizer (Verteporfin; VP) and examined ascorbic acid monoanion uptake, levels of glutathione, changes in membrane permeability, cell growth, and toxicity. Accumulation of VP was similar in each cell line. Under our experimental conditions, HL-60 cells were found to accumulate less ascorbate and have lower levels of intracellular GSH compared to U937 cells. Without added ascorbate, HL-60 cells were more sensitive to VP and light treatment than U937 cells. When cells were exposed to VP and light, ascorbate acted as an antioxidant in U937 cells, whereas it was a pro-oxidant for HL-60 cells. One possible mechanism to explain these observations is that HL-60 cells express myeloperoxidase activity, whereas in U937 cells it is below the detection limit. Inhibition of myeloperoxidase activity with 4-aminobenzoic acid hydrazide (4-ABAH) had minimal influence on the phototoxicity of VP in HL-60 cells in the absence of ascorbate. However, 4-ABAH decreased the toxicity of ascorbate on HL-60 cells during VP photosensitization, but had no affect on ascorbate toxicity in U937 cells. These data demonstrate that ascorbate increases hydrogen peroxide production by VP and light. This hydrogen peroxide activates myeloperoxidase, producing toxic oxidants. These observations suggest that in some settings, ascorbate may enhance the toxicity of photodynamic action.

Related Topics

    loading  Loading Related Articles