Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent IκB kinase/NF-κB pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes–endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-β (IKK-β) activity, lowered O2·− and H2O2 levels, tackled p47phox translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-β that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-β activity was also inhibited by (polyethylene glycol) PEG–catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte–HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis.

Related Topics

    loading  Loading Related Articles