Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6

    loading  Checking for direct PDF access through Ovid


Ergothioneine (Egt), the betaine of 2-mercapto-L-histidine, is a dietary antioxidant protecting against many diseases, including cardiovascular disease (CVD), through a redox mechanism different from alkylthiols. Here, experiments were designed to evaluate the mechanisms underlying the beneficial effect of Egt against hyperglycaemia-induced senescence in endothelial cells. To this end, cells were incubated with increasing concentrations of Egt (0.01–1.00 mM) for 12 h followed by incubation for 48 h with high-glucose (25 mM). Cell evaluation indicated that viability was not affected by mM concentrations of Egt and that the high-glucose cytotoxicity was prevented with the highest efficacy at 0.5 mM Egt. The cytoprotective effect of Egt was paralleled by reduced ROS production, cell senescence, and, interestingly, the formation of hercynine (EH), a betaine we recently found to be produced during the Egt oxidation pathway. Notably, the Egt beneficial effect was exerted through the upregulation of sirtuin 1 (SIRT1) and sirtuin 6 (SIRT6) expression and the downregulation of p66Shc and NF-κB. SIRT1 activity inhibition and SIRT6 gene silencing by small interfering RNA abolished the protective effect of Egt against the high-glucose-induced endothelial senescence. These data provide the first evidence of the Egt ability to interfere with endothelial senescence linked to hyperglycaemia through the regulation of SIRT1 and SIRT6 signaling, thus further strengthening the already assessed role of these two histone deacetylases in type 2 diabetes.

Related Topics

    loading  Loading Related Articles