Thioredoxin-mimetic peptides (TXM) inhibit inflammatory pathways associated with high-glucose and oxidative stress

    loading  Checking for direct PDF access through Ovid

Abstract

Impaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38MAPK), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar. A similar reduction in ERK1/2, p38MAPK, and Akt activities but without affecting blood-glucose was observed in the liver of db/db mice treated with a molecule that mimics the action of thioredoxin, called thioredoxin-mimetic peptide (TXM). N-Acetyl-Cys-Pro-Cys-amide (TXM-CB3) is a free radical scavenger, a reducing and denitrosylating reagent that protects the cells from early death induced by inflammatory pathways. TXM-CB3 also lowered MAPK signaling activated by the disruption of the thioredoxin-reductase-thioredoxin (Trx-TrxR) redox-system and restored Akt activity in rat hepatoma FAO cells. Similarly, two other TXM-peptides, N-Acetyl-Cys-Met-Lys-Cys-amide (TXM-CB13; DY70), and N-Acetyl-Cys-γGlu-Cys-Cys-amide (TXM-CB16; DY71), lowered insulin- and oxidative stress-induced ERK1/2 activation, and rescued HepG2 cells from cell death. The potential impact of TXM-peptides on inhibiting inflammatory pathways associated with high-glucose could be effective in reversing low-grade inflammation. TXM-peptides might also have the potential to improve insulin resistance by protecting from posttranslational modifications like nitrosylation.

Related Topics

    loading  Loading Related Articles