Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells

    loading  Checking for direct PDF access through Ovid


The age-associated decline of adult stem cell function contributes to the physiological failure of homeostasis during aging. The proteasome plays a key role in the maintenance of proteostasis and its failure is associated with various biological phenomena including senescence and aging. Although stem cell biology has attracted intense attention, the role of proteasome in stemness and its age-dependent deterioration remains largely unclear. By employing both Wharton's-Jelly- and Adipose-derived human adult mesenchymal stem cells (hMSCs), we reveal a significant age-related decline in proteasome content and peptidase activities, accompanied by alterations of proteasomal complexes. Additionally, we show that senescence and the concomitant failure of proteostasis negatively affects stemness. Remarkably, the loss of proliferative capacity and stemness of hMSCs can be counteracted through proteasome activation. At the mechanistic level, we demonstrate for the first time that Oct4 binds at the promoter region of β2 and β5 proteasome subunits and thus possibly regulates their expression. A firm understanding of the mechanisms regulating proteostasis in stem cells will pave the way to innovative stem cell-based interventions to improve healthspan and lifespan.

Related Topics

    loading  Loading Related Articles