Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis

    loading  Checking for direct PDF access through Ovid


The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes’ transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2-/-) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2-/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its effector GCL are both profoundly deregulated in endometriotic lesions towards increased growth and fibrogenetic processes.Graphical abstractAlteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to locally increased oxidative stress in ectopic lesion of endometriosis.HighlightsIn endometriosis the transcriptional factor Nrf2 is decreased in ectopic lesions.Decreased expression of Nrf2 is associated in a decreased expression of GCL.In a murine model Nrf2-/- implants were increased in weight and volume.

    loading  Loading Related Articles