A new model of diabetic nephropathy in C57BL/6 mice challenged with advanced oxidation protein products

    loading  Checking for direct PDF access through Ovid

Abstract

There remains a lack of robust mouse models with key features of advanced human diabetic nephropathy (DN). Few options of murine models of DN require mutations to be superimposed to obtain desired phenotypic characteristics. Most genetically modified mice are on the C57BL/6 background; however, they are notorious for resistance to develop DN. To overcome these conundrums, this study reports a novel DN model by challenging with advanced oxidation protein products (AOPPs) in streptozotocin-induced diabetic C57BL/6 mice. AOPPs-challenged diabetic C57BL/6 mice were more sensitive to develop progressive proteinuria, causing a 5.59-fold increase in urine albumin to creatinine ratio as compared to diabetic controls by 24 weeks. Typical lesions were present as demonstrated by significant diffuse mesangial expansion, diffuse podocyte foot process effacement, increased glomerular basement membrane thickness, focal arteriolar hyalinosis, mesangiolysis, and mild interstitial fibrosis. These changes were alleviated by losartan treatment. Collectively, these results suggest that AOPPs can accelerate the progression of DN in the resistant C57BL/6 mouse strain. Our studies offer a novel model for studying the pathogenesis of DN that resembles human diabetic kidney disease. It also makes it possible to interrogate the role of specific genetic modifications and to evaluate novel therapeutics to treat DN in preclinical setting.

Related Topics

    loading  Loading Related Articles