Biomass of fine roots and its relationship with water-stable aggregates in a composite ecosystem of triploidPopulus tomentosain the conversion of farmland to forest

    loading  Checking for direct PDF access through Ovid

Abstract

A study on the biomass of fine roots and its relationship with water-stable aggregates (WSA) was conducted in two herbaceous models, triploid Populus tomentosa + Lolium multiflorum (TL) and triploid P. tomentosa + natural grass (TN). Both of the model triploid P. tomentosa stands were four years old converted from agriculture. Unconverted steep slope farmland was used as a control site. Results showed that the biomass of fine roots (≤ 1 mm) in different layers varied in the following descending order: upper layer, middle layer and lower layer, at approximate ratios of 50:30:20. The average annual biomass of fine roots in ryegrass was twice that of the mixed natural grass-forest land. The total amount of natural grass roots was 4.4 times that of the ryegrass model. Water-stable aggregates of the upper, middle and lower layers and the unconverted farmland did not show any significant differences, whereas the amounts of water-stable aggregates of big-particles in the upper and middle layers were much larger than those of unconverted lands. The amounts of water-stable aggregates of natural grass-forest lands (TN model) were higher than those of managed grass-forest lands (TL model). Two-way analysis of variance indicated that fine roots (≤ 1 mm) could significantly enhance water-stable aggregates and total water-stable aggregates. We conclude that the program of converting agricultural lands to forest-grass lands is an effective way in improving soil anti-erosion capability.

Related Topics

    loading  Loading Related Articles