MARCH5 gene is duplicated in rainbow trout, but only fish-specific gene copy is up-regulated after VHSV infection

    loading  Checking for direct PDF access through Ovid

Abstract

Ubiquitination regulates the activity, stability, and localization of a wide variety of proteins. Several mammalian MARCH ubiquitin E3 ligase proteins have been suggested to control cell surface immunoreceptors. The mitochondrial protein MARCH5 is a positive regulator of Toll-like receptor 7-mediated NF-κB activation in mammals. In the present study, duplicated MARCH5-like cDNA sequences were isolated from rainbow trout (Oncorhynchus mykiss) comprising open reading frames of 882 bp (MARCH5A) and 885 bp (MARCH5B), respectively. Trout MARCH5A and MARCH5B-encoding sequences share only 65% sequence identity. Phylogenetic analyses including an additionally isolated MARCH5-like sequence from whitefish (Coregonus maraena) suggest that teleosts possess an additional MARCH5 gene copy resulting from a fish-specific whole genome duplication. Coding sequences of MARCH5A and MARCH5B genes from trout are distributed over six exons. Hypothetical MARCH5 proteins from trout comprise four transmembrane helices and a single motif similar to a RING variant domain (RINGv) including eight highly conserved cysteine and histidine residues. A ‘reverse-northern blot’ analysis revealed furthermore a MARCH5B Δexon5 transcript variant. Both MARCH5 genes from trout show a strain-, tissue- and cell-specific expression profile indicating different functional roles. Fish-specific MARCH5A gene for instance might be involved in defense mechanisms, since in vivo-challenge with the viral pathogen VHSV caused a significant 1.7-fold elevated copy number of the respective gene in gills four days after infection, whereas MARCH5B transcript level did not increase.

Related Topics

    loading  Loading Related Articles