The major fimbrial subunit protein ofEdwardsiella tarda: Vaccine potential, adjuvant effect, and involvement in host infection

    loading  Checking for direct PDF access through Ovid

Abstract

Edwardsiella tarda is a Gram-negative bacterium that is reckoned one of the most severe fish pathogens. In this study, we analyzed the biological properties of the E. tarda major fimbrial subunit protein, FimA. We found that mutation of fimA resulted in defective biofilm growth, attenuated infectivity against host cells, and impaired ability to disseminate into and colonize host tissues following experimental infection. When used as a subunit vaccine, recombinant FimA (rFimA) elicited a high level of protection in turbot (Scophthalmus maximus) against lethal E. tarda challenge. Immunological analysis showed that rFimA vaccination induced production of specific serum antibodies that bound to live E. tarda via interaction with the FimA on bacterial cells, and that antibody–E. tarda interaction blocked bacterial infection. Furthermore, passive immunization of turbot with anti-rFimA serum before E. tarda infection reduced bacterial loads in fish tissues to significant extents. To examine the adjuvant potential of FimA, turbot were vaccinated with rVhhP2, a protective Vibrio harveyi antigen, in the presence or absence of rFimA. Subsequent analysis showed that the presence of rFimA significantly augmented the protectivity of rVhhP2. ELISA and quantitative real time RT-PCR showed that rFimA significantly increased rVhhP2-specific serum antibody production and enhanced the expression of immune relevant genes. Taken together, these results indicate that FimA is a virulence-associated protein that possesses vaccine as well as adjuvant potentials, and that the immunoprotectivity of FimA is most likely due to its ability to induce specific immune response that inhibits E. tarda infection.

Related Topics

    loading  Loading Related Articles