The protective immunity against grass carp reovirus in grass carp induced by a DNA vaccination using single-walled carbon nanotubes as delivery vehicles

    loading  Checking for direct PDF access through Ovid


To reduce the lethal hemorrhagic disease caused by grass carp reovirus (GCRV) and improve the production of grass carp, efficient and economic prophylactic measure against GCRV is the most pressing desired for the grass carp farming industry. In this work, a novel SWCNTs-pEGFP-vp5 DNA vaccine linked vp5 recombinant in the form of plasmid pEGFP-vp5 and ammonium-functionalized SWCNTs by a chemical modification method was prepared to enhance the efficacy of a vp5 DNA vaccine against GCRV in juvenile grass carp. After intramuscular injection (1, 2.5 and 5 μg) and bath administration (1, 10, and 20 mg/L), the ability of the different immune treatments to induce transgene expression was analyzed. The results showed that higher levels of transcription and expression of vp5 gene could be detected in muscle tissues of grass carp in SWCNTs-pEGFP-vp5 treatment groups compare with naked pEGFP-vp5 treatment groups. Moreover, antibody levels, immune-related genes, and relative percentage survival were significantly enhanced in fish immunized with SWCNTs-pEGFP-vp5 vaccine. In addition, we found that a good immune protective effect was observed in bath immunization group; which at a concentration of 20 mg/L could reach the similar relative percentage survival (approximately 100%) in injection group at a dose of 5 μg. All these results indicated that ammonium-functionalized SWCNTs could provide extensive application prospect to aquatic vaccine and might be used to vaccinate fish by intramuscular injection or bath administration method.

Related Topics

    loading  Loading Related Articles