Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp,Litopenaeus vannamei

    loading  Checking for direct PDF access through Ovid

Abstract

Wnt signaling is known to control multiple of cellular processes such as cell differentiation, communication, apoptosis and proliferation, and is also reported to play a role during microbial infection. β-catenin is a key regulator of the Wnt signaling cascade. In the present study, we cloned and identified a β-catenin homologue from Litopenaeus vannamei termed Lvβ-catenin. The full-length of Lvβ-catenin transcript was 2797 bp in length within a 2451 bp open reading frame (ORF) that encoded a protein of 816 amino acids. Lvβ-catenin protein was comprised of several characteristic domains such as an N-terminal region of GSK-β consensus phosphorylation site and Coed coil section, a central region of 12 continuous Armadillo/β-Catenin-like repeat (ARM) domains and a C-terminal region. Real-time PCR showed Lvβ-catenin expression was responsive to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) infection. Dual-reporter analysis showed that over-expression of Lvβ-catenin could induce activation of the promoter activities of several antimicrobial peptides (AMPs) such as shrimp PEN4, suggesting that Lvβ-catenin could play a role in regulating the production of AMPs. Knockdown of Lvβ-catenin enhanced the sensitivity of shrimps to V. parahaemolyticus and WSSV challenge, suggesting Lvβ-catenin could play a positive role against bacterial and viral pathogens. In summary, the results presented in this study provided some insights into the function of Wnt/β-catenin of shrimp in regulating AMPs and the host defense against invading pathogens.

Related Topics

    loading  Loading Related Articles