The first molluscan TRIM9 is involved in the negative regulation of NF-κB activity in the Hong Kong oyster,Crassostrea hongkongensis

    loading  Checking for direct PDF access through Ovid


TRIM proteins are a group of highly conserved proteins participating in a variety of biological processes such as regulation of development, apoptosis, and innate immunity. However, the functions of these proteins in the mollusk are still poorly understood. In the present study, a TRIM9 homolog (named ChTRIM9) was first identified from a transcript-ome library in the Hong Kong oyster Crassostrea hongkongensis. The full-length cDNA of ChTRIM9 is 2928 bp and has a predicted Open Reading Frame ORF) encoding 721 amino acids, encoding a putative 80.2 kDa protein. SMART analysis indicated that ChTRIM9 contains the three typical TRIM domains, a RING finger, two B-boxes, and a coiled-coil domain in the N-terminal region, whereas the C-terminal region contains a SPRY domain. qRT-PCR analysis revealed a ubiquitous presence of ChTRIM9, with the highest expression in the gills. Upon bacterial challenge in vivo, the ChTRIM9 transcripts in hemocytes were significantly down-regulated, indicating its involvement in signal transduction in immune response of oysters. Furthermore, ChTRIM9 was found to be localized mainly in the cytoplasm, and its over-expression inhibited the transcriptional activity of the NF-κB gene in HEK293T cells, demonstrating its negative role in regulating NF-κB signaling.

Related Topics

    loading  Loading Related Articles