Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimpLitopenaeus vannamei

    loading  Checking for direct PDF access through Ovid


The effects of ammonia-N exposure (transferred from 0.07 to 2, 10 and 20 mg L−1) on the mechanism of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in treatment groups increased significantly within 12 h. The gene expression of guanylyl cyclase increased significantly from 3 h to 24 h. And dopamine receptor D4 and α2 adrenergic receptor gene expression in treatment groups decreased significantly within 12 h, whereas the mRNA expression of 5-HT7 receptor increased significantly within 3 h and reached the peak levels at 6 h. The second messengers (cAMP, cGMP) and Calmodulin (CaM) increased significantly in treatment groups after 3 h. The concentrations of protein kinases (PKA, PKG) shared a similar trend in cAMP and cGMP which were up-regulated and reached the peak value at 6 h, while the PKC decreased within 3 h and arrived at its bottom at 6 h. The nuclear factor kappa-b and cAMP-response element binding protein mRNA expression levels of treatment shrimps increased sharply and reached maximum values at 6 h. The total hemocyte count, phagocytic activity, antibacterial activity in treatment groups decreased dramatically within 48 h. Whereas the phenoloxidase activities slightly up-regulated. Then it was decreased significantly up to 48 h. α2-macroglobulin activity decreased at the first 3 h-stress. Then they up-regulated significantly in 6 h. The results suggest that there are two crucial neuroendocrine substances (biogenic amine and CHH), which play a principal role in adapting to ammonia-N exposure and cause immune response through cAMP-, CaM- and cGMP-dependent pathways.

Related Topics

    loading  Loading Related Articles