Molecular characterization and expression of toll-like receptor 5 genes fromPelteobagrus vachellii

    loading  Checking for direct PDF access through Ovid

Abstract

Toll-like receptor 5 (TLR5) is an important pathogen recognition receptor (PRR) that recognizes the flagellin protein of pathogenic bacteria and plays a fundamental role in activating the innate immune response. In this study, full-length pvTLR5m (membrane) and pvTLR5s (soluble) genes were cloned from darkbarbel catfish Pelteobagrus vachellii, and their expression and that of downstream genes were analyzed following exposure to the Aeromonas hydrophila pathogen. The 3009 bp pvTLR5m cDNA includes a 2652 bp open reading frame (ORF) encoding 884 amino acids. The 2422 bp pvTLR5s cDNA includes a 1944 bp ORF encoding a predicted protein of 648 amino acids. The genes are most closely related to TLR5m (75%) and TLR5s (69%) from Ictalurus punctatus, respectively, and both have a typical TLR structure. Both genes were constitutively expressed in all examined tissues, and most abundantly in the head kidney and spleen. Following pathogen challenge, pvTLR5m and pvTLR5s expression was increased significantly (P < 0.05) and peaked at 24 and 12 h post-exposure in the liver, 24 and 12 h in the head kidney, and 48 and 24 h in the spleen, respectively. The downstream genes interleukin-1β (IL-1β), IL-12 and tumor necrosis factor-alpha (TNF-α) were significantly up-regulated following pathogen exposure in spleen, and the NF-kB inhibitor (IκB) was down-regulated. These findings indicated that pvTLR5 may play an important role in the immune responses to A. hydrophila. These results provide new insight to elucidate the immune signalling pathways of fish TLR.

Related Topics

    loading  Loading Related Articles